SQLTurk: A Human Interface to Relational Databases

Master Project Report *

Kerui Huang
Computer Science Department
University of California, Santa Cruz
khuang7@ucsc.edu

ABSTRACT

In many real life scenarios, people need to interact with rela-
tional databases without knowing SQL, the prevalent query
language in current relational databases. To address this
issue, this project introduces a novel system named SQL-
Turk, which provides a human interface between natural
language and SQL query language. SQLTurk takes advan-
tage of crowdsourcing to implement the two major phases
— authoring and ranking queries. Additionally, to optimize
the query results, SQLTurk also employs four algorithms to
aggregate results. We use the World and TPC-H databases
in our experiments to evaluate the performance of SQLTurk.
Furthermore, we are interested in the factors which possi-
bly influence the results. The experimental results show
that: 1) aggregating few ranked queries can lead to a good
performance; 2) showing sample data to workers is helpful;
3) among the four aggregation algorithms, our Intersection
and Union have high precision, while Full Disjunction and
Full Disjunction Plus have high recall; 4) the complexities
of query and schema are not very influential.

1. INTRODUCTION

In many practical scenarios, non-expert users need to in-
teract with relational databases in order to extract the data
they want. For instance, natural scientists need to retrieve
the information from very large datasets stored in relational
databases. However, most people have no background in
computer science and are not familiar with SQL, the preva-
lent query language in current relational databases. On the
one hand, without knowing SQL query language, it is impos-
sible for them to query a database themselves and get data
as needed. On the other hand, the learning curve for SQL
query language can be quite steep, which is very difficult
to overcome for people who have no background in com-
puter science. Even though learning SQL query language is

*This project is under the guidance of Professor Neoklis
Polyzotis, joint work with Professor Wan-Chiew Tan and
Dr. Bogdan Alexe.

a possible way for them, it will probably also take a con-
siderable amount of time and effort before reaching a SQL
query formulation that produces the desired results when
run over the available data, which distracts them from their
own research. In this sense, it is very desirable to provide
non-expert users of relational database systems a capabil-
ity that enables them to extract information stored in the
databases via questions in natural language, instead of spe-
cialized technical languages such as SQL.

The rapid growth of crowdsourcing within research and
industry produces a novel idea aimed at dealing with this
problem — translating natural language statements into SQL
queries. We can think of crowdsourcing as a specific kind of
the combination of cloud computing and outsourcing. On
crowdsourcing platforms, such as Amazon Mechanical Turk
[1], CrowdFlower [2], oDesk [3], there are many different
kinds of people, named crowds, with various skills working
on miscellaneous tasks all over the world. In real world, it
is not hard to find some certain tasks which are very diffi-
cult for computers but relatively easy to carry out by human
workers. Two prominent examples of such tasks are image
categorization and natural language processing. This obser-
vation incurs the emergence of crowdsourcing as a brand-
new solution to these problems.

Though natural language processing can be used for con-
verting a language to another language, these techniques
are not very successful in domain specific implementations
of natural language due to the difficulty in understanding
semantics. However, humans can understand semantics eas-
ily, which makes crowdsourcing a potential solution to this
specific issue. Our purpose is to build a system where non-
expert users can give the natural language descriptions of the
characteristics of the desired results, such as the information
they want to retrieve from databases, and then get the data
as needed with the help of worldwide on-demand freelance
workforce in crowdsourcing environment. As a popular plat-
form of crowdsourcing, Amazon Mechanical Turk [1], which
is especially good for simple tasks, serves our purpose in an
ideal way. We leverage this platform as our infrastructure
under the hood for crowdsourcing, involving human intel-
ligence as part of our solution. Besides, we also make use
of four algorithms to aggregate the intermediate results in
order to reach a better final result.

The outline for the rest of this project report is as follows.
Section 2 gives an overview of the crowdsourcing platform
we use in our project — Amazon Mechanical Turk. Section 3
describes the two primary phases of our crowdsourcing tasks,
authoring query and ranking query respectively. In section

4, we discuss the four algorithms for result aggregation. In
section 5, we discuss the performance metric we used for
evaluating SQLTurk and our experimental results.

2. THE AMAZON MECHANICAL TURK

Amazon Mechanical Turk [1] is a widely-used crowdsourc-
ing infrastructure, where thousands of tasks are posted and
taken by people every day. These transactions help people
solve many problems which are fairly difficult or even im-
possible for computers. The original usage of Amazon Me-
chanical Turk was for removing duplicate product listings
on its website. A few months before Amazon released many
of its cloud-computing services such as the Elastic Compute
Cloud, SimpleDB, and Simple Storage Service, they released
Mechanical Turk for public usage.

In this crowdsourcing environment, the first step of the
workflow is to make tasks available to workers. The re-
questers post their tasks as HITs with task descriptions,
requirements and sample results and so on, while workers
can browse through these tasks and pick up the tasks they
like to work on. When the tasks are completed, the workers
submit the results to Amazon Mechanical Turk and wait for
their payments. After the requesters collect the results, they
can review these results to ensure the quality of the answers
and decide to accept or reject the results. If the results are
rejected, the workers providing these results are not paid. If
the requesters are satisfied with these results, the payment
is triggered automatically for these result providers after the
results are accepted.

The basic and atomic task unit on Amazon Mechanical
Turk is Human Intelligence Task, or HIT for short. Accord-
ing to different complexity of the work, the prices of differ-
ent HITs can range from 1 cent to several dollars. However,
the majority of crowdsourcing tasks on Mechanical Turk are
small tasks, and they are what Mechanical Turk is good
at. By completing a HIT, the workers get a certain amount
of financial reward set by the requesters. In addition, this
platform is a global platform where you can gather all the
workers all over the world to work for you [4]. It is so flexi-
ble that many tools can be found to formulate your task and
control the workflow, such as command line tools and devel-
opment SDKs in major programming languages like Java,
Python, Ruby and so on. With this powerful infrastruc-
ture, we can easily build our tasks on top of it and use it as
the interface of the translation from natural language state-
ments to SQL queries. The non-expert users can use this
intermediary for collecting the initial results, rather than
learning SQL query language themselves. This process is
transparent for non-expert users. And because price is not
the dominant factor in the quality of the work as is shown in
[?], people can pay only a small amount of money to have so-
lutions of high quality, rather than paying as much as some
traditional ways such as hiring over-qualified and expensive
experts to write queries against the target databases. We
use this crowdsourcing as the backbone in the initial phases
of our SQLTurk.

3. QUERY AUTHORING AND RANKING VIA

CROWDSOURCING

In this project, we take some initial steps towards using
Amazon Mechanical Turk as an intermediary between non-
expert users and relational databases. In the first phase, we

[Natural Language Descriptions]

[Database Schema]

Crowds

'

[Candidate SQL Queries]

[Ranked SQL Queries

!

[Intermediate Resulting Tuples]

Y

[Aggregation Algorithm
[Final Resulting Tuples

Figure 1: The overall workflow of SQLTurk.

ask the workers to write the queries based on given condi-
tions and requirements. After obtaining these queries, we
move to the second phase which also involves using crowds
to solve the problem. In the second phase, in order to have
a better sense of which queries are probably of high quality,
we let workers rank the candidate queries coming from the
first phase. By getting the ranking results, we can sort can-
didates according to their ranks. In this way can we choose
top k for our aggregation work, which is supposed to lead to
a better outcome than the outcome resulting from another
mode that we only employ a singe worker and use the only
one query from this worker. The first two phases, author-
ing and ranking queries, involve crowdsourcing, while the
aggregation phase does not. The aggregation phase mainly
emphasizes on exploiting database techniques to optimize
the results. The overall workflow is shown in Figure 1. This
section describes how authoring and ranking queries work in
SQLTurk.

3.1 Query Authoring

At the very beginning, we employ workers to write queries
based on our needs. Such tasks are presented with some nat-
ural language descriptions about the task and the related
database schema. These pieces of information are supposed
to come up with enough information for a worker to acquire
the entire picture of this particular task, such as what infor-
mation to query about, what are the basic rules to follow,
how the database schema looks like and so forth.

To help authors to write correct queries, we supply a syn-
tax validation button, which informs them whether their
queries are syntactically valid or not against the current
particular database instance. If a query does not pass this
validation, a red line of error message shows up beneath the
incorrect query, specifying what portion of the syntax threw
what kind of error. Then workers can modify their queries
based on this piece of information and validate their queries
again until they reach the syntactically-correct queries. If a
query with syntax error is submitted, this query will be re-

jected during the review process and the worker will not be
paid. Therefore, besides the tips of how to correct queries,
this is also of great help for workers to ensure the syntactic
validity of their queries and thus they will get paid after-
wards.

In order to examine how samples affect human’s perfor-
mance, we divide our authoring tasks into two types, with or
without samples respectively. Every authoring HIT contains
two tasks. The first task is to write queries only based on
the given natural language statements and the correspond-
ing database schema. The second task is to write queries
based on not only these given pieces of information as above
but also some sample data from the databases. We choose
five tuples for each table as the sample data and present
them to workers. The sample data may visually aid people
to obtain a better sense of the database. In addition, work-
ers can also move their mouse onto an attribute to trigger
a bubble which has more information about the attribute,
such as the type of the attribute, whether it is a foreign
key and so on. The two tasks differ from each other, which
means each task can be considered as a separate task of
authoring a query for a natural language question, because
it does not make any sense to repeat a same task twice.
Also, this can avoid the side effect that the first task may be
somehow helpful for workers to work on the next one. To be
fair enough, the two questions existing in the two tasks in a
single HIT have same complexity but are literally different,
which is supposed to rule out other factors except the sam-
ples if there is any difference observed between these two
tasks.

3.2 Query Ranking

Due to the diversity and flexibility of crowdsourcing, it
is difficult to say that one can have the best result by em-
ploying only one worker. A better way is to involve more
workers and then choose the better results among these can-
didate results. After the first phase, we have collected the
candidate queries from our workers. The next phase is to
figure out which queries are better queries.

This phase is quite similar to the previous phase. We also
make use of crowdsourcing to complete the ranking tasks.
Each ranking HIT is equivalent to a previous authoring HIT.
The two tasks in a ranking HIT are almost the same as the
two tasks in a authoring HIT. The only difference lies in that
the text field which used to serve as the place for inputting
the query is replaced by a list of candidate queries from the
first phase. There is a box associated to each candidate
query and workers are asked to enter the rank of the corre-
sponding query in the box based on their own point of view.
Likely, each ranking HIT also employs a few workers to rank
the candidate queries within it, under the same assumption
that more than one workers are always better than a single
one. Therefore, after this phase, all the candidate queries
have a list of rankings for them. For instance, we may ask
ten workers to write a query for a given natural language
question in the first phase. Then, in the second phase, after
we collect all the ten candidate queries from these ten work-
ers, we post the HIT asking another ten workers to rank the
ten queries from the first phase. Therefore, when the second
phase is done, we have ten rankings for these ten candidate
queries.

Since we use external page as our implementation method
interacting with Amazon Mechanical Turk, we have the full

[Intermediate Resulting Tuples]

|
! ! ! |

. . Full Full
Intersection Union Disjunction Disjunction
Plus
Final Final Final Final
Resulting Resulting Resulting Resulting
Tuples Tuples Tuples Tuples

Figure 2: The aggregation process of SQLTurk.

control of the workflow on it. We wrote a function in Javascript
to check the validity of answers. When a worker submits
the answer, if the answer is invalid, such as having dupli-
cate rankings or the ranking is beyond the scope, the task
page pops up a warning window indicating the error. In this
way can we guarantee each submission are eligible for our
ranking purpose. After the submission passes the validation
function, the answers are submitted to a particular form
specified by Amazon Mechanical Turk. Then, the answers
are recorded by Mechanical Turk automatically. When all
answers for a HIT are available, we can then approve all
these tasks, pay the workers and download the ranking re-
sults for future use.

4. AGGREGATION FOR OPTIMIZATION

The first phase provides us a list of candidate queries for
each certain natural language question, and we assume that
the task worked by a group of people is always better than
a single worker. Furthermore, in the second ranking phase,
workers imply their preferences on the quality of queries by
ranking these query formulations. After the second phase,
all the candidate queries are ranked, which helps us to sort
these queries by their quality.

To consolidate the per-worker rankings, median-rank al-
gorithm is applied to derive the final ranking [?]. The algo-
rithm takes all the rankings into account and finally comes
up with the final ranking. This enables us to integrate all
rankings from different workers and come to an agreement.

After we merge all the rankings to reach a final ranking, we
now attain a list of finally ranked queries. Each candidate
query can be used for querying database and then have a
table containing all the resulting tuples. We utilize the mul-
tiple queries and their ranking for aggregation, which leads
to a better final result. Here are four basic algorithms for
aggregation. Figure 2 illustrates the process of aggregation
in SQLTurk. We discuss the four aggregation algorithms in
this section with more details. They are Intersection, Union,
Full Disjunction and Full Disjunction Plus.

4.1 The Intersection

The first algorithm for aggregation is our Intersection.
This algorithm is different from traditional intersection. To
illustrate it, we introduce the concept of equivalent class.
The equivalent class is introduced to find the attributes
which are semantically equivalent but in different relations
with different names. We use foreign key constraints for
finding the attributes in different relations that are equiv-

alent. If there is a foreign key constraint between two at-
tributes in separate relations, we say these two attributes
are in same equivalent class. The Intersection between two
relations means that we take only the attributes which are
in the same equivalent class when performing an analysis
on our results. For instance, a query of “select * from Em-
ployee” might return three distinct attributes (first name,
last name, ID number). Another query of “select firstName
from Employee” might return one attribute “firstName”. If
the two returned attribute are common attributes or there
is a foreign key constraint between them, the intersection re-
sult is the tuple with only one attribute “firstName” if their
values are equal.

4.2 The Union

The second algorithm is our Union algorithm, which also
vary from the traditional union algorithm. The Union algo-
rithm is sort of similar to the Intersection algorithm. How-
ever, instead of rule out the tuples which mutually disagree
with each other in the resulting relations, the Union algo-
rithm tries to include as many tuples as possible. That is,
the Union algorithm accept all the tuples from each result-
ing relation no matter whether they agree on equivalent at-
tributes or not. Moreover, duplicate tuples are eliminated
in the final result. It apparent that the Intersection algo-
rithm may result in missing correct tuples, while the Union
algorithm may result in keeping incorrect tuples.

4.3 The Full Disjunction

The Full Disjunction algorithm employed by SQLTurk was
proposed by Anand Rajaraman and Jeffrey D. Ullman [6].
We can observe that both Intersection and Union focus on
the operations on tuples. However, they can incur informa-
tion loss. As an example, consider a tourist who is choos-
ing a destination. Among the plethora of sites that contain
tourist information are sites that specify climates, sites that
elaborate on tourist attractions and sites that specialize in
hotels. On the one hand, for a more straightforward view of
the information, the tourist need a relation which joins all
the consistent tuples together. On the other hand, to obtain
the entire picture of his possible choices, the tourist needs
all the pieces of information, which means even though some
attributes of a tuple are null, the tuple is still supposed to
be kept in the resulting table. Namely, we need a way to
effectively query a collection of data sources and combine
the data together in a coherent fashion without losing any
information. The Full Disjunction is a variation of the join
operator that maximally combines tuples from connected re-
lations. It can be seen as a natural extension of the binary
outerjoin operator to an arbitrary number of relations and
is a useful operator for information integration.

4.4 The Full Disjunction Plus

The original Full Disjunction algorithm uses the consis-
tency of common attributes to do the join operation. A pos-
sible variant of Full Disjunction is to take advantage of the
provenance resulting tuples. We modify the original defini-
tion of Full Disjunction so that join operations also take into
account provenance, a great property of data. This new ver-
sion Full Disjunction is called Full Disjunction Plus. Specif-
ically, we employ why-provenance and tableaux in our Full
Disjunction Plus. Tableaux capture possible data associa-
tions through foreign key constraints on a database schema.

There is one tableau for each relation in the schema and
each tableau is constructed starting from a single relation
via chase with outgoing foreign key constraints. We first use
tableaux to rewrite the queries by appending the tableaux
involving the queries. Then, we use why-provenance to keep
track of the provenance of each resulting table, which is used
for checking if two tuples are from the same provenance.
When we use the framework of the original Full Disjunc-
tion to do the join operation, we add a new condition for
determining whether two tuples should be joined that these
two tuples are from the same provenance. Therefore, the
new conditions for joining two tuples are not only based on
whether they agree on common attributes but also depends
on whether they stem from the same provenance. Since
provenance is introduced in Full Disjunction Plus, it is more
strict than the original Full Disjunction algorithm to join
two tuples together, but this can be useful to increase the
accuracy of final results.

S. EXPERIMENTAL EVALUATIONS

To evaluate our new approach, we deployed our tasks on
Amazon Mechanical Turk and collected queries written by
workers. Then, we aggregated all these queries with the four
algorithms mentioned above. After we get the final results,
we used our performance metric to evaluate the performance
of SQLTurk. In this section, we will first present the overall
workflow of our experiments, and then introduce the per-
formance metric we used for evaluating the results. Finally,
we will present the experimental results and discuss about
them.

5.1 Workflow

In our experiments, we made use of two datasets. The
first database, named World, contains geographical and de-
mographical information which is used as a sample scenario
for the MySQL database server. The other one is the TPC-H
database which is a decision support benchmark. The World
database is less complex than TPC-H database in terms of
their schemas.

Then, we brought up 8 questions for each dataset. All
these questions are designed to be as natural as possible.
By natural, we mean these queries are very likely to be
asked in the real world. Besides, these questions are also
different in their difficulty or complexity. For example, some
simple questions may only involve a table, while some com-
plicated questions may need join operations across several
tables. There are 4 different complexity levels, and each level
has 2 questions. Intuitively, the two questions at the same
complexity level are complexity-equivalent. In light of this,
we always have two questions which are equally complicated.

As shown in Figure 1, we first make use of Amazon Me-
chanical Turk as our crowdsourcing platform. We deployed
our tasks on Amazon Mechanical Turk to collect queries for
our proposed natural language questions. As mentioned in
previous section, each authoring HIT has two separate ques-
tions. The first question is given with the database schema
and the natural language question. Besides the schema
and question, the second question also comes up with some
sample data for each table, such as the first five rows of
each table. Also, both of the two question are complexity-
equivalent, which means the only difference between the two
question in a single HIT lies in whether the sample data is
displayed or not. Moreover, for each question, we asked ten

workers to work on the question which produced 10 candi-
date queries each.

After receiving all 10 candidate queries for a question, we
posted a related ranking HIT which asked 10 workers to rank
these candidate queries, Similarly, the first ranking task in
the HIT showed workers the schema and question, while the
second question additionally showed them sample data.

At the next step, we utilize median-rank algorithm to in-
tegrate the 10 rankings for the 10 queries and then reach the
final ranking of 10 queries.

To test whether the ranking is helpful, we choose some
top k queries, where k can range from 2 to 10. The top k
queries then generate k resulting tables, which will be used
for the next step of aggregation.

By querying database with the chosen queries, we have
some resulting tables. Then, we use the four aggregation al-
gorithms described above to merge these tables. Note that
Full Disjunction and Full Disjunction Plus are computation-
intensive, we use an alternate implementation [5] in SQL-
Turk. After aggregation, all the original resulting tables are
integrated into one table, which is the final result of SQL-
Turk. So far, we have the final result of SQLTurk. The next
step is to evaluate this result so as to have a better sense of
its performance. Before presenting the experimental results,
we introduce the performance metric we used.

5.2 Performance Metric

After the aggregation process, we now have one result-
ing table for a given natural language question. To measure
the performance of SQLTurk, we need to know how far it is
away from the “correct” answer. Therefore, we will use the
performance metric to compare the results returned by our
techniques with the results produced by executing the “cor-
rect” query. The performance metric involves two precision
and recall. Precision indicates how much of the returned
result is actually valuable, while recall indicates how much
the returned result covers the correct result. Therefore, both
precision and recall are related to measuring the similarity
between two relations.

First, we introduce the measure of similarity between two
tuples t and ¢’ as follows:

{A|3A"t. A =t'.A'and A, A’ compatible}|
It

This measure captures how many of the values in ¢ can
be recovered from the values of ¢ on compatible attributes.
The compatible attributes are the same attributes or distinct
attributes belonging to the same equivalenct class. Then, we
use the similarity between a tuple ¢ and an instance I’, as
the maximum value of the similarity between ¢ and any of
the tuples in I':

Sim(t,I') = mawxy e Sim(t,t')

Sim(t,t') = |

The measure of similarity between two relation instances
I and I’ is the sum of similarities between each tuple in I
and I’, normalized by the number of tuples of I:

1
Sim(I,1') = == > Sim(t, I')
1=
After we have the similarity measure for two relation.
With the help of this measure, we can define our precision
and recall as follows:

Precision = Sim(I,I'), Recall = Sim(I',)

where I is the instance finally returned by SQLTurk, while
I’ is the instance which is the result of running the correct
SQL query.

So far, we have introduced our performance metric. Then,
we are now ready to present some results about the effec-
tiveness of SQLTurk.

5.3 Experimental Results

In this experiment, we intend to measure various aspects
of SQLTurk. The factors which are considered to have im-
pact on the performance of SQLTurk are the complexity of
database schemas, the complexity of queries, the user in-
terface such as whether sample data are shown or not, how
many queries we use for aggregation computation and the
overall impact of different algorithms on the performance.
To make the experiments more close to real world scenarios,
our default configuration of experiments utilized a question
whose correct query was neither too easy nor too difficult
as the standard one. In addition, we used top 3 candidate
queries from this question for aggregation process by de-
fault. Finally, because the requesters may not know any-
thing about the database, the default question was given
without any sample data from the database.

5.3.1 The Number of Queries for Aggregation

The work completed by more than one person is usu-
ally better than the work done by only one worker, we dis-
tributed 10 assignments for each question and then collected
the 10 candidate queries from these assignments. When all
the 10 queries were returned, we created another 10 assign-
ments for ranking these 10 candidate queries. After the
ranking phase, median rank was applied to integrate the
10 rankings to reach the final ranking. Then, we aggregated
different numbers of ranked queries to see if the number of
queries used for aggregation caused differences. Figure 3
shows that the precision of final result decreased in general
when we involved more queries in aggregation, no matter
what aggregation algorithm it was. However, the recall of
the results generated by Full Disjunction and Full Disjunc-
tion Plus almost did not change, but we can also observe a
very slight increase. The recall from Intersection or Union
decreased a little. This indicates that only a few queries
cab probably lead to a good performance, while involving
more queries makes aggregation worse. Because the queries
were ranked already after the ranking phase, involving more
queries also means introducing more noise into future aggre-
gation, which is the reason why the precision and recall went
down with the increase of number of queries involved. Also,
it tells us that the final result can benefit from the ranking
phase, which implies the quality of queries.

5.3.2 The Complexity of Database Schema

Different databases come up with different schemas. The
common sense is that simple schemas are easier for peo-
ple to understand, which are therefore supposed to lead
better results. The first factor we examined is the com-
plexity of database schema. As mentioned before, we used
two datasets in our experiments — World database from
MySQL server demo and TPC-H benchmark. There are
only three relations in World database, while the TPC-H
database contains eight relations. In the meantime the num-
ber of attributes in TPC-H is much more than that in World
database. Also, TPC-H has more foreign key constraints

Precision of Aggregation from Different Top K
Queries in World Database

M ntersection

m Union

Precision
Recall

mFD

FD+

Precision of Aggregation from Different Top K
Queries in TPC-H Database

M Intersection

mUnion

Recall

mFD

Precision

FD+

Figure 3: The impact of the number

Precision of Different Databases Recall of Different Databases

M Intersection
W Union
mFD

FD+

M Intersection
W Union
WFD

FD+

World TPC-H World TPC-H
Database Database

Figure 4: The overall comparison of precision
and recall between World database and TPC-H
database.

than World does. In this sense, we say the schema database
of TPC-H is more complex than the schema of World database.
Figure 4 depicts the changes of precision and recall of
the standard query with different databases. On the one
hand, even though Full Disjunction and Full Disjunction
Plus have slightly lower precision, the difference of the over-
all precision between the two databases is not significant.
On the other hand, the difference of recall between World
and TPC-H is insignificant as well. This interesting phe-
nomenon implies that the complexity of database schema
has little contribution to the performance of our approach.
Namely, this means there is necessary relationship between
the complexity of database schema and the performance.
Though a query may involve a very complicated database,
it does not necessarily mean that the query itself needs to
be as complicated as the database schema. On the contrary,
the query can possibly be associated with a relatively simple
question. In short, there is no certain connection between
the complexity of schema and the performance, since the
complexity schema does not necessarily mean a complicated

Recall of Aggregation from Different Top K
Queries in World Database

_ MIntersection
W Union
 mfD

FD+

Recall of Aggregation from Different Top K
Queries in TPC-H Database

_ Mintersection
mUnion
mFD

FD+

of queries used for aggregation.

query, which confuses workers and thus reduce the precision
and recall.

5.3.3 The Complexity of Query

Since different complexities of queries may lead to differ-
ent outcomes, we examine the impact of the complexity of
query too. We used four queries with different complexities
against each database. For example, the simplest queries
are only involve one relation, while the most complex one
may require workers to join multiple tables and use more
predicates. All the related questions were shown without
sample data. Figure 5 shows the experimental results. The
simplest queries got higher precision and recall than other
queries. We can also see that the precision and recall derived
by some algorithm changed. Nevertheless, it is surprising
that there is no evident pattern under these changes. This
probably means that the complexity of query may not have
influence on the results.

5.3.4 Sample

The user interface can be another important factor for
SQLTurk, since it involves human. More specifically, the
user interface we examined in our experiments is whether
sample data are displayed to workers or not, which is the
most important aspect of user interface we think in SQL-
Turk. With the help of sample data, people are more likely
to have a better understanding of the task. Concrete ex-
amples always make people have a better sense of how the
database schema looks like, which eases the work process
by making it more straightforward. From Figure 6, we can
observe that the precision was higher when the question had
examples. However, the recall with samples became lower.
With some samples, workers are more likely to write accu-
rate queries. Therefore, the precision can be higher if we

Recall of Queries with
Different Complexities in

Precision of Queries with
Different Complexities in World

Database World Database
1 1
0.9 3 mIntersection 0.9 mIntersection

038 =038

:% 82 W Union §g_g B Union

S 0. &o.

Sos WFD g8 uFD
0.4 FD+ 0.4 FD+
03 03
0.2 0.2
0.1 0.1

0 0
1 2 3 4
Complexity Complexity
Precision of Queries with Recall of Queries with
Different Complexities in TPC-H Different Complexities in TPC-
Database H Database
1 -~
82 — M Intersection _ Mintersection

,5 07 — MUnion ?g — mUnion

2 0.6 — N -

805 _ mfD __mfD

~o04 — 1 FD+ L FD+
03 - —

0.2 - -
0.1 - -
0
1 2 3 4 1 2 3 4

Complexity Complexity

Figure 5: The impact of complexity of query.

Precision of Queries
with/without Samples in World
Database

Recall of Queries with/without
Samples in World Database

1 — {1
— o9 4+— —
8:2 M Intersection 08 - ,
g 07 —— mUnion = 07 - e
2 06 — S 06 I
@ 05 =D &g o3l T
£ 04 02 ————————
03 [mFD+ 03 FD+
0.2 I 02
0.1 — 0.1
0 0
No Yes No Yes
Sample Sample

Precision of Queries
with/without Samples in TPC-H
Database

Recall of Queries with/without
Samples in TPC-H Database

__ mintersection 0.8

W Union
——————®mFD
N T

Precision
Recall

)

>

Yes No Yes
Sample Sample

Figure 6: The impact of sample data.

provide samples. Without samples, since it is more difficult
for workers to get the whole picture of the problem, their
answers probably introduce more noisy data, which retains
more data and thereby obtains a higher recall.

5.3.5 The Overall Comparison between Algorithms

Finally, we used the standard query to explore the overall
performance of each algorithm. Different algorithms have
different properties, which can lead to quite different re-
sults. Figure 7 demonstrates that Intersection and Union
have higher precision, while Full Disjunction and Full Dis-
junction Plus have higher recall. As discussed before, it is
mainly because Intersection and Union only keep the equiv-
alent attributes, while Full Disjunction and Full Disjunction
Plus keep as many attributes and tuples as possible.

6. CONCLUSION

In this project, we introduce our new approach SQLTurk

M Intersection

M ntersection

Precision and Recall of Different
Algorithms in TPC-H Database

Precision and Recall of Different
Algorithms in World Database

1
17 0.9
ot i1
0.7 | 06 | [
° gg] mPrecision o 05 |—J— W Precision
T 04 - £ 24
£ 03 | < 03
8%] Recall 0.1 Recall
0 A 0
&
© &
\‘\“@ N

Algorithm Algorithm

Figure 7: The overall comparison between algo-
rithms.

to solve the problem of translating natural language state-
ments into SQL queries. Intuitively, people bring up their
question in natural language while the data are stored in
relational databases, where SQL query language is required
for retrieving information. There must be a way to translate
natural language statements into SQL queries. However, se-
mantics of natural language is the handicap to achieve this
goal by computer, since semantics is quite difficult for com-
puter to understand. SQLTurk takes advantage of crowd-
sourcing to overcome this problem. We make use of hu-
man intelligence to gain queries. To optimize the results,
we utilize four algorithms to aggregate the results. The
experiments show that we can improve the performance of
the results in some certain ways, such as using only a few
top ranked queries for aggregation, showing sample data to
workers. Moreover, we can choose appropriate algorithms to
aggregate resulting tuples based on our needs, since different
algorithms have different properties and thus have different
performance on precision and recall.

7. REFERENCES

[1] Amazon Inc., Amazon Mechanical Turk,
https://www.mturk.com/mturk/welcome.

[2] Crowdflower Inc., CrowdFlower,
https://www.crowdflower.com.

[3] oDesk Inc., oDesk, https://www.odesk.com.

[4] P. Iperotis. Mechanical Turk Demographics,
http://behind-the-enemy-
lines.blogspot.com /2008 /03 /mechanical-turk-
demographics.html, March,

2008.

[5] S. Cohen. An incremental algorithm for computing
ranked full disjunctions. In In PODS, 2005.

[6] E. Ed, A. Rajaraman, and J. D. Ullman. Integrating
information by outerjoins and full disjunctions. In In
Proc. 15th Symposium on Principles of Database
Systems, pages 238-248. ACM Press, 1996.

